* Step 1: DependencyPairs WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: div(x,y) -> quot(x,y,y) div(0(),y) -> 0() plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) quot(x,0(),s(z)) -> s(div(x,s(z))) quot(0(),s(y),z) -> 0() quot(s(x),s(y),z) -> quot(x,y,z) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y - Signature: {div/2,plus/2,quot/3,times/2} / {0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {div,plus,quot,times} and constructors {0,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs div#(x,y) -> c_1(quot#(x,y,y)) div#(0(),y) -> c_2() plus#(x,0()) -> c_3() plus#(0(),y) -> c_4() plus#(s(x),y) -> c_5(plus#(x,y)) quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) quot#(0(),s(y),z) -> c_7() quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) times#(0(),y) -> c_9() times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) times#(s(0()),y) -> c_11() Weak DPs and mark the set of starting terms. * Step 2: UsableRules WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: div#(x,y) -> c_1(quot#(x,y,y)) div#(0(),y) -> c_2() plus#(x,0()) -> c_3() plus#(0(),y) -> c_4() plus#(s(x),y) -> c_5(plus#(x,y)) quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) quot#(0(),s(y),z) -> c_7() quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) times#(0(),y) -> c_9() times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) times#(s(0()),y) -> c_11() - Weak TRS: div(x,y) -> quot(x,y,y) div(0(),y) -> 0() plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) quot(x,0(),s(z)) -> s(div(x,s(z))) quot(0(),s(y),z) -> 0() quot(s(x),s(y),z) -> quot(x,y,z) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y - Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1 ,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {div#,plus#,quot#,times#} and constructors {0,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y div#(x,y) -> c_1(quot#(x,y,y)) div#(0(),y) -> c_2() plus#(x,0()) -> c_3() plus#(0(),y) -> c_4() plus#(s(x),y) -> c_5(plus#(x,y)) quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) quot#(0(),s(y),z) -> c_7() quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) times#(0(),y) -> c_9() times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) times#(s(0()),y) -> c_11() * Step 3: PredecessorEstimation WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: div#(x,y) -> c_1(quot#(x,y,y)) div#(0(),y) -> c_2() plus#(x,0()) -> c_3() plus#(0(),y) -> c_4() plus#(s(x),y) -> c_5(plus#(x,y)) quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) quot#(0(),s(y),z) -> c_7() quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) times#(0(),y) -> c_9() times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) times#(s(0()),y) -> c_11() - Weak TRS: plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y - Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1 ,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {div#,plus#,quot#,times#} and constructors {0,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {2,3,4,7,9,11} by application of Pre({2,3,4,7,9,11}) = {1,5,6,8,10}. Here rules are labelled as follows: 1: div#(x,y) -> c_1(quot#(x,y,y)) 2: div#(0(),y) -> c_2() 3: plus#(x,0()) -> c_3() 4: plus#(0(),y) -> c_4() 5: plus#(s(x),y) -> c_5(plus#(x,y)) 6: quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) 7: quot#(0(),s(y),z) -> c_7() 8: quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) 9: times#(0(),y) -> c_9() 10: times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) 11: times#(s(0()),y) -> c_11() * Step 4: RemoveWeakSuffixes WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: div#(x,y) -> c_1(quot#(x,y,y)) plus#(s(x),y) -> c_5(plus#(x,y)) quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) - Weak DPs: div#(0(),y) -> c_2() plus#(x,0()) -> c_3() plus#(0(),y) -> c_4() quot#(0(),s(y),z) -> c_7() times#(0(),y) -> c_9() times#(s(0()),y) -> c_11() - Weak TRS: plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y - Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1 ,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {div#,plus#,quot#,times#} and constructors {0,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:div#(x,y) -> c_1(quot#(x,y,y)) -->_1 quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)):4 -->_1 quot#(0(),s(y),z) -> c_7():9 2:S:plus#(s(x),y) -> c_5(plus#(x,y)) -->_1 plus#(0(),y) -> c_4():8 -->_1 plus#(x,0()) -> c_3():7 -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):2 3:S:quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) -->_1 div#(0(),y) -> c_2():6 -->_1 div#(x,y) -> c_1(quot#(x,y,y)):1 4:S:quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) -->_1 quot#(0(),s(y),z) -> c_7():9 -->_1 quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)):4 -->_1 quot#(x,0(),s(z)) -> c_6(div#(x,s(z))):3 5:S:times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) -->_2 times#(s(0()),y) -> c_11():11 -->_2 times#(0(),y) -> c_9():10 -->_1 plus#(0(),y) -> c_4():8 -->_1 plus#(x,0()) -> c_3():7 -->_2 times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)):5 -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):2 6:W:div#(0(),y) -> c_2() 7:W:plus#(x,0()) -> c_3() 8:W:plus#(0(),y) -> c_4() 9:W:quot#(0(),s(y),z) -> c_7() 10:W:times#(0(),y) -> c_9() 11:W:times#(s(0()),y) -> c_11() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 10: times#(0(),y) -> c_9() 11: times#(s(0()),y) -> c_11() 7: plus#(x,0()) -> c_3() 8: plus#(0(),y) -> c_4() 6: div#(0(),y) -> c_2() 9: quot#(0(),s(y),z) -> c_7() * Step 5: Decompose WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: div#(x,y) -> c_1(quot#(x,y,y)) plus#(s(x),y) -> c_5(plus#(x,y)) quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) - Weak TRS: plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y - Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1 ,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {div#,plus#,quot#,times#} and constructors {0,s} + Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} + Details: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) - Strict DPs: div#(x,y) -> c_1(quot#(x,y,y)) quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) - Weak DPs: plus#(s(x),y) -> c_5(plus#(x,y)) times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) - Weak TRS: plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y - Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1 ,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {div#,plus#,quot#,times#} and constructors {0,s} Problem (S) - Strict DPs: plus#(s(x),y) -> c_5(plus#(x,y)) times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) - Weak DPs: div#(x,y) -> c_1(quot#(x,y,y)) quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) - Weak TRS: plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y - Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1 ,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {div#,plus#,quot#,times#} and constructors {0,s} ** Step 5.a:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: div#(x,y) -> c_1(quot#(x,y,y)) quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) - Weak DPs: plus#(s(x),y) -> c_5(plus#(x,y)) times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) - Weak TRS: plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y - Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1 ,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {div#,plus#,quot#,times#} and constructors {0,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:div#(x,y) -> c_1(quot#(x,y,y)) -->_1 quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)):4 2:W:plus#(s(x),y) -> c_5(plus#(x,y)) -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):2 3:S:quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) -->_1 div#(x,y) -> c_1(quot#(x,y,y)):1 4:S:quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) -->_1 quot#(x,0(),s(z)) -> c_6(div#(x,s(z))):3 -->_1 quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)):4 5:W:times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):2 -->_2 times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)):5 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 5: times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) 2: plus#(s(x),y) -> c_5(plus#(x,y)) ** Step 5.a:2: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: div#(x,y) -> c_1(quot#(x,y,y)) quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) - Weak TRS: plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y - Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1 ,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {div#,plus#,quot#,times#} and constructors {0,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: div#(x,y) -> c_1(quot#(x,y,y)) quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) ** Step 5.a:3: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: div#(x,y) -> c_1(quot#(x,y,y)) quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) - Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1 ,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {div#,plus#,quot#,times#} and constructors {0,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 3: quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) Consider the set of all dependency pairs 1: div#(x,y) -> c_1(quot#(x,y,y)) 2: quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) 3: quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1)) SPACE(?,?)on application of the dependency pairs {3} These cover all (indirect) predecessors of dependency pairs {1,2,3} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. *** Step 5.a:3.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: div#(x,y) -> c_1(quot#(x,y,y)) quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) - Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1 ,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {div#,plus#,quot#,times#} and constructors {0,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_6) = {1}, uargs(c_8) = {1} Following symbols are considered usable: {div#,plus#,quot#,times#} TcT has computed the following interpretation: p(0) = [0] p(div) = [2] x1 + [8] x2 + [0] p(plus) = [2] x2 + [2] p(quot) = [8] x1 + [1] x2 + [1] p(s) = [1] x1 + [3] p(times) = [1] p(div#) = [4] x1 + [10] x2 + [0] p(plus#) = [1] x1 + [0] p(quot#) = [4] x1 + [10] x3 + [0] p(times#) = [1] x2 + [1] p(c_1) = [1] x1 + [0] p(c_2) = [4] p(c_3) = [1] p(c_4) = [1] p(c_5) = [1] p(c_6) = [1] x1 + [0] p(c_7) = [0] p(c_8) = [1] x1 + [10] p(c_9) = [8] p(c_10) = [4] x1 + [0] p(c_11) = [0] Following rules are strictly oriented: quot#(s(x),s(y),z) = [4] x + [10] z + [12] > [4] x + [10] z + [10] = c_8(quot#(x,y,z)) Following rules are (at-least) weakly oriented: div#(x,y) = [4] x + [10] y + [0] >= [4] x + [10] y + [0] = c_1(quot#(x,y,y)) quot#(x,0(),s(z)) = [4] x + [10] z + [30] >= [4] x + [10] z + [30] = c_6(div#(x,s(z))) *** Step 5.a:3.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: div#(x,y) -> c_1(quot#(x,y,y)) quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) - Weak DPs: quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) - Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1 ,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {div#,plus#,quot#,times#} and constructors {0,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () *** Step 5.a:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: div#(x,y) -> c_1(quot#(x,y,y)) quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) - Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1 ,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {div#,plus#,quot#,times#} and constructors {0,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:div#(x,y) -> c_1(quot#(x,y,y)) -->_1 quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)):3 2:W:quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) -->_1 div#(x,y) -> c_1(quot#(x,y,y)):1 3:W:quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) -->_1 quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)):3 -->_1 quot#(x,0(),s(z)) -> c_6(div#(x,s(z))):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: div#(x,y) -> c_1(quot#(x,y,y)) 2: quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) 3: quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) *** Step 5.a:3.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1 ,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {div#,plus#,quot#,times#} and constructors {0,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). ** Step 5.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: plus#(s(x),y) -> c_5(plus#(x,y)) times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) - Weak DPs: div#(x,y) -> c_1(quot#(x,y,y)) quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) - Weak TRS: plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y - Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1 ,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {div#,plus#,quot#,times#} and constructors {0,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:plus#(s(x),y) -> c_5(plus#(x,y)) -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):1 2:S:times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) -->_2 times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)):2 -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):1 3:W:div#(x,y) -> c_1(quot#(x,y,y)) -->_1 quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)):5 4:W:quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) -->_1 div#(x,y) -> c_1(quot#(x,y,y)):3 5:W:quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) -->_1 quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)):5 -->_1 quot#(x,0(),s(z)) -> c_6(div#(x,s(z))):4 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: div#(x,y) -> c_1(quot#(x,y,y)) 4: quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) 5: quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) ** Step 5.b:2: Decompose WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: plus#(s(x),y) -> c_5(plus#(x,y)) times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) - Weak TRS: plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y - Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1 ,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {div#,plus#,quot#,times#} and constructors {0,s} + Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} + Details: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) - Strict DPs: plus#(s(x),y) -> c_5(plus#(x,y)) - Weak DPs: times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) - Weak TRS: plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y - Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1 ,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {div#,plus#,quot#,times#} and constructors {0,s} Problem (S) - Strict DPs: times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) - Weak DPs: plus#(s(x),y) -> c_5(plus#(x,y)) - Weak TRS: plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y - Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1 ,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {div#,plus#,quot#,times#} and constructors {0,s} *** Step 5.b:2.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: plus#(s(x),y) -> c_5(plus#(x,y)) - Weak DPs: times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) - Weak TRS: plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y - Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1 ,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {div#,plus#,quot#,times#} and constructors {0,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: plus#(s(x),y) -> c_5(plus#(x,y)) The strictly oriented rules are moved into the weak component. **** Step 5.b:2.a:1.a:1: NaturalPI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: plus#(s(x),y) -> c_5(plus#(x,y)) - Weak DPs: times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) - Weak TRS: plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y - Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1 ,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {div#,plus#,quot#,times#} and constructors {0,s} + Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_5) = {1}, uargs(c_10) = {1,2} Following symbols are considered usable: {div#,plus#,quot#,times#} TcT has computed the following interpretation: p(0) = 0 p(div) = 2 + 4*x1 + x1*x2 + x1^2 + x2 p(plus) = 3 + x1*x2 + 2*x1^2 p(quot) = 2 + x1 + x1*x3 + 4*x1^2 p(s) = 1 + x1 p(times) = 2*x1 p(div#) = x1*x2 + x1^2 p(plus#) = x1 p(quot#) = 4*x1 + x1*x2 + 2*x1^2 + 4*x2 + x2^2 p(times#) = x1 + 5*x1*x2 + 6*x2^2 p(c_1) = 1 p(c_2) = 1 p(c_3) = 0 p(c_4) = 1 p(c_5) = x1 p(c_6) = 0 p(c_7) = 0 p(c_8) = 0 p(c_9) = 0 p(c_10) = 1 + x1 + x2 p(c_11) = 1 Following rules are strictly oriented: plus#(s(x),y) = 1 + x > x = c_5(plus#(x,y)) Following rules are (at-least) weakly oriented: times#(s(x),y) = 1 + x + 5*x*y + 5*y + 6*y^2 >= 1 + x + 5*x*y + y + 6*y^2 = c_10(plus#(y,times(x,y)),times#(x,y)) **** Step 5.b:2.a:1.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: plus#(s(x),y) -> c_5(plus#(x,y)) times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) - Weak TRS: plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y - Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1 ,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {div#,plus#,quot#,times#} and constructors {0,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () **** Step 5.b:2.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: plus#(s(x),y) -> c_5(plus#(x,y)) times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) - Weak TRS: plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y - Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1 ,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {div#,plus#,quot#,times#} and constructors {0,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:plus#(s(x),y) -> c_5(plus#(x,y)) -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):1 2:W:times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) -->_2 times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)):2 -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) 1: plus#(s(x),y) -> c_5(plus#(x,y)) **** Step 5.b:2.a:1.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y - Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1 ,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {div#,plus#,quot#,times#} and constructors {0,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). *** Step 5.b:2.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) - Weak DPs: plus#(s(x),y) -> c_5(plus#(x,y)) - Weak TRS: plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y - Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1 ,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {div#,plus#,quot#,times#} and constructors {0,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):2 -->_2 times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)):1 2:W:plus#(s(x),y) -> c_5(plus#(x,y)) -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: plus#(s(x),y) -> c_5(plus#(x,y)) *** Step 5.b:2.b:2: SimplifyRHS WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) - Weak TRS: plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y - Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1 ,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {div#,plus#,quot#,times#} and constructors {0,s} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) -->_2 times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: times#(s(x),y) -> c_10(times#(x,y)) *** Step 5.b:2.b:3: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: times#(s(x),y) -> c_10(times#(x,y)) - Weak TRS: plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y - Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1 ,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {div#,plus#,quot#,times#} and constructors {0,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: times#(s(x),y) -> c_10(times#(x,y)) *** Step 5.b:2.b:4: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: times#(s(x),y) -> c_10(times#(x,y)) - Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1 ,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {div#,plus#,quot#,times#} and constructors {0,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: times#(s(x),y) -> c_10(times#(x,y)) The strictly oriented rules are moved into the weak component. **** Step 5.b:2.b:4.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: times#(s(x),y) -> c_10(times#(x,y)) - Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1 ,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {div#,plus#,quot#,times#} and constructors {0,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_10) = {1} Following symbols are considered usable: {div#,plus#,quot#,times#} TcT has computed the following interpretation: p(0) = [1] p(div) = [2] p(plus) = [2] x2 + [0] p(quot) = [1] x1 + [4] x2 + [8] x3 + [1] p(s) = [1] x1 + [3] p(times) = [1] p(div#) = [1] x1 + [1] p(plus#) = [1] x2 + [0] p(quot#) = [1] x1 + [4] x2 + [1] p(times#) = [2] x1 + [2] p(c_1) = [1] x1 + [0] p(c_2) = [1] p(c_3) = [0] p(c_4) = [1] p(c_5) = [2] p(c_6) = [8] x1 + [1] p(c_7) = [1] p(c_8) = [1] x1 + [0] p(c_9) = [4] p(c_10) = [1] x1 + [3] p(c_11) = [0] Following rules are strictly oriented: times#(s(x),y) = [2] x + [8] > [2] x + [5] = c_10(times#(x,y)) Following rules are (at-least) weakly oriented: **** Step 5.b:2.b:4.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: times#(s(x),y) -> c_10(times#(x,y)) - Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1 ,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {div#,plus#,quot#,times#} and constructors {0,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () **** Step 5.b:2.b:4.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: times#(s(x),y) -> c_10(times#(x,y)) - Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1 ,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {div#,plus#,quot#,times#} and constructors {0,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:times#(s(x),y) -> c_10(times#(x,y)) -->_1 times#(s(x),y) -> c_10(times#(x,y)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: times#(s(x),y) -> c_10(times#(x,y)) **** Step 5.b:2.b:4.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1 ,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {div#,plus#,quot#,times#} and constructors {0,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^2))